Isolation and characterization of fission yeast sns mutants defective at the mitosis-to-interphase transition.

نویسندگان

  • A Matynia
  • U Mueller
  • N Ong
  • J Demeter
  • A L Granger
  • K Hinata
  • S Sazer
چکیده

pim1-d1ts was previously identified in a visual screen for fission yeast mutants unable to complete the mitosis-to-interphase transition. pim1+ encodes the guanine nucleotide exchange factor (GEF) for the spi1 GTPase. Perturbations of this GTPase system by either mutation or overproduction of its regulatory proteins cause cells to arrest with postmitotic condensed chromosomes, an unreplicated genome, and a wide medial septum. The septation phenotype of pim1-d1ts was used as the basis for a more extensive screen for this novel class of sns (septated, not in S-phase) mutants. Seventeen mutants representing 14 complementation groups were isolated. Three strains, sns-A3, sns-A5, and sns-A6, representing two different alleles, are mutated in the pim1+ gene. Of the 13 non-pim1ts sns complementation groups, 11 showed genetic interactions with the spi1 GTPase system. The genes mutated in 10 sns strains were synthetically lethal with pim1-d1, and six sns strains were hypersensitive to overexpression of one or more of the known components of the spil GTPase system. Epistasis analysis places the action of the genes mutated in nine of these strains downstream of pim1+ and the action of one gene upstream of pim1+. Three strains, sns-A2, sns-B1, and sns-B9, showed genetic interaction with the spil GTPase system in every test performed. sns-B1 and sns-B9 are likely to identify downstream targets, whereas sns-A2 is likely to identify upstream regulators of the spi1 GTPase system that are required for the mitosis-to-interphase transition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring.

Fission yeast cells divide by medial cleavage using an actin-based contractile ring. We have conducted a genetic screen for temperature-sensitive mutants defective in the assembly and placement of this actin ring. Six genes necessary for actin ring formation and one gene necessary for placement of the actin ring have now been identified. The genes can be further organized into different phenoty...

متن کامل

A NIMA homologue promotes chromatin condensation in fission yeast.

Entry into mitosis requires p34(cdc2), which activates downstream mitotic events through phosphorylation of key target proteins. In Aspergillus nidulans, the NIMA protein kinase has been identified as a potential downstream target and plays a role in regulating chromatin condensation at mitosis. nimA- mutants arrest in a state that physically resembles interphase even though p34(cdc2) is fully ...

متن کامل

Ase1p organizes antiparallel microtubule arrays during interphase and mitosis in fission yeast.

Proper microtubule organization is essential for cellular processes such as organelle positioning during interphase and spindle formation during mitosis. The fission yeast Schizosaccharomyces pombe presents a good model for understanding microtubule organization. We identify fission yeast ase1p, a member of the conserved ASE1/PRC1/MAP65 family of microtubule bundling proteins, which functions i...

متن کامل

Mob2p interacts with the protein kinase Orb6p to promote coordination of cell polarity with cell cycle progression.

The molecular mechanisms that temporally and spatially coordinate cell morphogenesis with the cell cycle remain poorly understood. Here we describe the characterization of fission yeast Mob2p, a novel protein required for regulating cell polarity and cell cycle control. Deletion of mob2 is lethal and causes cells to become spherical, with depolarized actin and microtubule cytoskeletons. A decre...

متن کامل

Cell cycle-dependent specific positioning and clustering of centromeres and telomeres in fission yeast

Fluorescence in situ hybridization (FISH) shows that fission yeast centromeres and telomeres make up specific spatial arrangements in the nucleus. Their positioning and clustering are cell cycle regulated. In G2, centromeres cluster adjacent to the spindle pole body (SPB), while in mitosis, their association with each other and with the SPB is disrupted. Similarly, telomeres cluster at the nucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 148 4  شماره 

صفحات  -

تاریخ انتشار 1998